beta-Amyloid of Alzheimer's disease induces reactive gliosis that inhibits axonal outgrowth.
نویسندگان
چکیده
Pathological lesions in the brains of patients with Alzheimer's disease (AD) are characterized by dense deposits of the protein beta-amyloid. The link between the deposition of beta-amyloid in senile plaques and AD-associated pathology is, at present, controversial since there have been conflicting reports on whether the 39-43 amino acid beta-amyloid sequence is toxic or trophic to neurons. In this report, we show that beta-amyloid peptide when presented as an insoluble substrate which mimics its conformation in vivo can induce cortical glial cells in vitro and in vivo to locally deposit chondroitin sulfate containing proteoglycan. In vitro the proteoglycan-containing matrix deposited by glia on beta-amyloid blocks the usual ability of the peptide to allow cortical neurons to adhere and grow. Chondroitin sulfate-containing proteoglycan was also found in senile plaques of human AD tissue. We suggest that an additional effect of beta-amyloid in the brain, which compounds the direct effects of beta-amyloid on neurons, is mediated by the stimulation of astroglia to become reactive. Once in the reactive state, glial cells deposit large amounts of growth-inhibitory molecules within the neuropil which could impair neuronal process survival and regeneration leading to neurite retraction and/or dystrophy around senile plaques in AD.
منابع مشابه
The role of astrocytes in amyloid production and Alzheimer's disease
Alzheimer's disease (AD) is marked by the presence of extracellular amyloid beta (Aβ) plaques, intracellular neurofibrillary tangles (NFTs) and gliosis, activated glial cells, in the brain. It is thought that Aβ plaques trigger NFT formation, neuronal cell death, neuroinflammation and gliosis and, ultimately, cognitive impairment. There are increased numbers of reactive astrocytes in AD, which ...
متن کاملReactive astrocytes and astrocyte intermedite filament (nanofilament) system in neurodegenerative diseases
Astrocytes have multiple functions in the central nervous system (CNS), e.g control of the formation, function and removal of neuronal synapses, control of blood flow, and they play a role in brain responses to neurotrauma and stroke. In CNS injury, stroke, or in neurodegenerative diseases, astrocytes upregulate the expression of intermediate filament (nanofilament) proteins glial fibrillary ac...
متن کاملP135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease
Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms. Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...
متن کاملThe Effect of Endurance Training on the Expression of PRDX6 and KAT2B Genes in Hippocampus of Beta Amyloid-Induced Rat Model of Alzheimer's Disease: An Experimental Study
Background and Objectives: Alzheimer's disease is the most common form of dementia. KAT2B (Lysine Acetyltransferase 2B) is a mitochondrial protein known as mitochondria clearing control organ by mitophagy. PRDX6 (Peroxiredoxin 6) is a key regulator of mitophagy and plays a critical role in maintaining mitochondrial ROS (Reactive oxygen species) homeostasis. Therefore, the purpose of this study ...
متن کاملAmyloid precursor protein promotes post-developmental neurite arborization in the Drosophila brain.
The mechanisms regulating the outgrowth of neurites during development, as well as after injury, are key to the understanding of the wiring and functioning of the brain under normal and pathological conditions. The amyloid precursor protein (APP) is involved in the pathogenesis of Alzheimer's disease (AD). However, its physiological role in the central nervous system is not known. Many physical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental neurology
دوره 124 2 شماره
صفحات -
تاریخ انتشار 1993